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Abstract: Increasing atmospheric CO2 concentration may impact production agriculture. In the fall 
of 1997, a study was initiated to examine the response of different tillage systems to changing 
atmospheric CO2 level. The study used a split-plot design (three replications) with two tillage 
systems (conventional tillage and no-tillage) as main plots and two atmospheric CO2 levels 
(ambient and twice ambient) as sub-plots using open top chambers on a Decatur silt loam (clayey, 
kaolinitic, thermic Rhodic Paleudults). The conventional tillage system was a grain sorghum 
[Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.] rotation with winter fallow 
and spring tillage practices. In the no-tillage system, sorghum and soybean were rotated and three 
cover crops were used [crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), 
and wheat (Triticum aestivum L.)] under no-tillage practices. Over multiple growing seasons (three 
for each crop), the effect of management and CO2 level on leaf level gas exchange during row crop 
reproductive growth were evaluated. Findings were fairly consistent across years with higher 
photosynthetic rates being observed under high CO2 (more so with soybean) regardless of 
management practice. Further, elevated CO2 led to decreased stomatal conductance and 
transpiration, and increased water use efficiency. Results suggest that better soil moisture 
conservation and high rates of photosynthesis can occur in both tillage systems in CO2-enriched 
environments during reproductive growth. 
Key words: global change, conservation tillage, photosynthesis, transpiration. 

INTRODUCTION and LITERATURE REVIEW 
Over the last decade, numerous studies have 

demonstrated that elevated atmospheric CO2 often 
enhances plant water use efficiency, net 
photosynthesis, and biomass production (Amthor, 
1995). The effect of elevated CO2 on crop residue 
production can influence soil C dynamics in 
agroecosystems (Rogers et al., 1999; Torbert et al., 
2000). Furthermore, C dynamics can be altered by 
management practices (Kern and Johnson, 1993; 
Potter et al., 1998). There is a lack of information on 
how elevated CO2 will interact with management 
practices, especially the newer ones being used in 
conservation systems. Systems that maintain high 
levels of residue can help mitigate problems by 
enhancing soil C storage and soil water holding 
capacity, reducing evaporative soil water loss, and 
improving soil water infiltration. Crop growth is often 

reduced under soil water deficits owing to decreases 
in photosynthesis, stomatal aperture, and water 
potential (Boyer, 1982) during critical reproductive 
stages when demand for water is high. The effect of 
elevated CO2 in the field may depend on the crop 
species utilized; C3 and C4 crops such as soybean and 
sorghum represent two photosynthetic types which 
are known to respond differentially to elevated CO2 

both with regard to carbon metabolism and water use 
(Rogers et al., 1983b; Amthor, 1995). 

In the current study, crops were grown in a large 
outdoor soil bin under two different atmospheric CO2 

environments (ambient and twice ambient) and 
management conditions (conventional tillage and no-
tillage). The objective was to investigate the effect of 
management and CO2 level on leaf level gas exchange 
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during row crop (sorghum and soybean) reproductive 
growth over multiple growing seasons. 

MATERIAL and METHOD 
This study was initiated in the fall of 1997 using 

an outdoor soil bin (7m x 76 m) at the  USDA-ARS  
National Soil Dynamics Laboratory in Auburn, 
Alabama, USA (Batchelor, 1984). A split-plot design 
replicated three times was used with two cropping 
systems (conventional and no-tillage) as main plots 
and two CO2 levels (ambient and twice ambient) as 
subplots using open top field chambers (Rogers et al., 
1983a) on a Decatur silt loam (clayey, kaolinitic, 
thermic Rhodic Paleudults). 

In the conventional system, grain sorghum and 
soybean were rotated each year with spring tillage 
after winter fallow. In the no-tillage system, grain 
sorghum and soybean were also rotated, but with 
three winter cover crops (crimson clover, sunn hemp, 
and wheat) which were also rotated; all were grown 
without tillage. The wheat served as cover as well as 
being harvested for grain. Cover crops were broadcast 
planted while row crop seeds were planted on 0.38 m 
row spacing. Extension recommendations were used 
in managing the crops. 

At final harvest, plants were removed and total 
fresh weights recorded. A subsample of the non-yield 
material (residue) was taken and its fresh weight 
recorded; the subsample was dried (55 oC) and total 
residue was calculated using the fresh weight to dry 
weight ratios (Prior et al., 2005). The remaining 
residue material was returned to each plot. For grain 
crops (sorghum, soybean, and wheat), yields were 
determined following correction for moisture. In the 
conventional system (after fallow period), weed dry 
weight was measured as described above and residue 
was returned to plots prior to tillage.  

During reproductive growth, leaf level 
measurements [i.e., photosynthesis, stomatal 
conductance (data not shown), and transpiration) 
were made twice a week using a LI-6400 Portable 
Photosynthesis System (LI-COR, Inc., Lincoln, NE). 
Measurements were taken at midday on three 
different randomly chosen leaves (fully expanded, sun 
exposed leaves at the canopy top) per plot and were 
initiated at the start of reproductive growth. Soil water 
status was also monitored at two depths (20 and 40 

cm) using time domain reflectometry (Topp et al., 
1980), but only the 20 cm data are presented. 

RESULTS and DISCUSSION 
The rise in atmospheric CO2 concentration may 

alter future responses. Past work has clearly shown 
that elevated atmospheric CO2 often enhances plant 
biomass production and subsequently the amount of 
residue returned to the soil surface and belowground 
(Torbert et al., 2000). A review of the literature 
indicated that the fate of crop residue and soil carbon 
dynamics are highly influenced by management 
practices under current atmospheric CO2 conditions 
(Kern and Johnson, 1993). Currently, there is a lack of 
information on how elevated CO2 will interact with no-
till management practices. Advantages of no-till 
management is that maintaining high levels of residue 
can help mitigate problems by enhancing soil C 
storage and soil water holding capacity, reducing 
evaporative soil water loss, and improving soil water 
infiltration. 

Although previous work has shown that total 
residue inputs were higher under no-till, especially 
under elevated CO2 conditions (Prior et al., 2005), the 
impact of no-till management on enhancing crop 
yields was small relative to conventional tillage in our 
study. Dry matter data across all seasons for both 
crops are shown in Figure 1. In general, benefits of 
no-till altering yield and stover production was more 
notable in sorghum compared to soybean. In 
comparison, the benefits of additional CO2 was clearly 
evident in all years of study. Soybean exhibited a 
greater response to elevated CO2 across all growing 
seasons relative to sorghum. The greater response of 
soybean to CO2 are in general agreement with 
reviews of the literature (Rogers et al., 1983b; Rogers 
and Dahlman, 1993; Amthor, 1995). 

Likewise, management had little effect on gas 
exchange measurements reported here (Figs. 2 and 
3). Response patterns to imposed treatment across 
the various years were consistent in that elevated CO2 

had a greater impact on reported measurement. C3 

and C4 crops such as soybean and sorghum represent 
two photosynthetic types which are known to respond 
differentially to elevated CO2 both with regard to 
carbon metabolism and water use (Rogers et al., 
1983b; Amthor, 1995). Multiple years of observations 
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in our study clearly illustrated this pattern of 
response. Seasonal averages indicated that elevated 
CO2 increased soybean photosynthesis approximately 
50% regardless of the management system used for 
all years. In comparison, sorghum photosynthesis 
increased about 15% across years for both systems. 
The photosynthetic field response of these two crops 
were in the range previously reported in a review by 
Rogers and Dahlman (1993). Soybean transpiration 
was more variable than photosynthesis. Elevated CO2 

decreased transpiration around 17% across years for 
both systems. Sorghum transpiration decreased more 
consistently—approximately 26%. Dugas et al. (1997) 
reported a CO2-induced decrease in whole plant 
both conventional and conservation tillage systems. 

transpiration for soybean and sorghum in a field study 
using stem flow gauges. Overall, changes in 
photosynthesis and transpiration led to elevated CO2-
induced increases in water use efficiency of 86% for 
soybean and 51% for sorghum. These shifts in water 
use efficiency are in general agreement with reviews 
of the literature (Rogers et al., 1983b; Rogers and 
Dahlman, 1993; Amthor, 1995). 

In general, management had little effect on gas 
exchange measurements. These results suggest that 
in a future CO2-enriched environment better soil 
moisture conservation and high rates of 
photosynthesis can lead to increased productivity in 
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Figure 1. Dry production (stover and grain) for soybean (1999, 2001, 2003) and sorghum (2000, 2002, 2004) 
under ambient (A) and elevated (E) atmospheric CO2 conditions and two management systems (conventional 
tillage and no-tillage) are shown. 
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Figure 2. Three seasons (1999, 2001, 2003) of gas exchange measures (Pn=photosynthesis; Tr=Transpiration; 
WUE= water use efficiency) during reproductive growth for soybean grown under conventional tillage (CT) or 
no-tillage (NT) and exposed to ambient (A) or elevated (E) atmospheric CO2; means within graphs are seasonal 
averages. Corresponding seasonal rainfall and volumetric soil water measurements are also shown. 
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Figure 3. Three seasons (2000, 2002, 2004) of gas exchange measures (Pn=photosynthesis; Tr=Transpiration; 
WUE= water use efficiency) during reproductive growth for sorghum grown under conventional tillage (CT) or 
no-tillage (NT) and exposed to ambient (A) or elevated (E) atmospheric CO2; means within graphs are seasonal 
averages. Corresponding seasonal rainfall and volumetric soil water measurements are also shown. 
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